Extensions 1→N→G→Q→1 with N=C2 and Q=C62⋊C4

Direct product G=N×Q with N=C2 and Q=C62⋊C4
dρLabelID
C2×C62⋊C424C2xC6^2:C4288,941


Non-split extensions G=N.Q with N=C2 and Q=C62⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C62⋊C4) = C62.6(C2×C4)central extension (φ=1)48C2.1(C6^2:C4)288,426
C2.2(C62⋊C4) = (C6×C12)⋊2C4central extension (φ=1)48C2.2(C6^2:C4)288,429
C2.3(C62⋊C4) = C623C8central extension (φ=1)48C2.3(C6^2:C4)288,435
C2.4(C62⋊C4) = (C6×C12)⋊C4central stem extension (φ=1)244+C2.4(C6^2:C4)288,422
C2.5(C62⋊C4) = C3⋊Dic3.D4central stem extension (φ=1)484-C2.5(C6^2:C4)288,428
C2.6(C62⋊C4) = C3⋊S3.5D8central stem extension (φ=1)248+C2.6(C6^2:C4)288,430
C2.7(C62⋊C4) = C326C4≀C2central stem extension (φ=1)488-C2.7(C6^2:C4)288,431
C2.8(C62⋊C4) = C3⋊S3.5Q16central stem extension (φ=1)488-C2.8(C6^2:C4)288,432
C2.9(C62⋊C4) = C327C4≀C2central stem extension (φ=1)488+C2.9(C6^2:C4)288,433
C2.10(C62⋊C4) = (C2×C62)⋊C4central stem extension (φ=1)244C2.10(C6^2:C4)288,434
C2.11(C62⋊C4) = (C2×C62).C4central stem extension (φ=1)244C2.11(C6^2:C4)288,436

׿
×
𝔽